Properties of LQ regulators
Stability of LQ regulators

One of the important properties of LQ regu-
lators is that provided certain conditions are
met, they guarantee nominally stable closed
loop systems.

Recall the algebraic Riccati equation for con-
tinuous time systems:

0=ATS+SA—-SBR'BTs+0Q (1)
The state feedback gain matrix is:
K = R~ 1BTS, aconstantmatrix  (2)
The control law is:
u(t) = —Kz(t) (3)
and the closed loop system is:

i = (A — BK)z(t) (4)



Definition 1 (Stabilizability) A state space
pair (A, B) is stabilizable is there exists a
state feedback gain K such that the closed
loop system matrix (A — BK) is stable.

If a system is stabilizable then all unstable
eigenvalues of the A matrix can be made
stable by means of constant state feedback
(A— KB).

Notice that controllability implies stabilizabil-
ity.

Definition 2 (Controllability) The dynamic
system x = Ax—+ Bu, is said to be controllable
if the controllability matrix:

c:[B AB .. An—lB]

has rank n, where n is the dimension of the
state vector zx.



Definition 3 (Observability) The dynamic
system r = Ax 4+ Bu, y = Cx is said to be
observable if the observability matrix:

C
O — C.A

CA;v,—l
has rank n, where n is the dimension of the
state vector x.



The conditions for achieving a stable LQ sys-
tem are as follows.

e R>0, Q>0

e (A, B) stabilizable

e (A,C) observable, where Q = c?C



Example

Consider the problem of finding an optimal
control law for a linear time invariant system

with:
0O 1 0
a=15 o) 2=[1]

and a performance index:

J= %/OOO {Qx%(t) + 2u2(t)} dt

Check if this system can be made stable by
LQ control and if so find the optimal control
law.

Solution

The system is open loop unstable, as it has
two zero eigenvalues.

Checking controllability:

1 0

The system is controllable and therefore it is
stabilizable.

Czlo 1];rank(C):2



We have that

—_ 120 _
o=[33]. e

We need to find C such that CTC = Q.

_|v2 0
C_[o 0
"5 o
_| 0 O _
O = 0 V3 , rank(©Q) =2
_O 0

The system is observable through C. Then,
we know that the closed loop optimal control
system will be stable.

We will now solve the algebraic Riccati equa-
tion.



Define the symmetric matrix S as follows:
g — | S11 S21
§21 S22

and let's calculate all the terms of the ARE:
ATS _ OO0 $11 821 | _ 0 0
1 0 $21 S22 S$11 S21

_ | s11 s21 O 1| _ |0 s11
SA_[521 822][0 0]_[0 821]

_SBR—lBTS — _1 | S11  S21 o) [ 0 1 ] S11  S21
2 | S21 822 1 821 822
_ 1| s21
__5_322] [ s21 s22 |
_ 1| s5 521522
2| s21822  Sa;
20
o =[5 3]



This gives three equations:

1
—§s§1+2=0:>321:2

1o /
—5822 + 25901 = 0 = 590 = /45091 = 2v/2

1 1

—5521822 + 3511 =0= 511 = 5821822 — 2\/§

The state feedback gain is:

_ 1 22 2
RlBTSZE[O 1}[ 4 2\5]:[1 \6}

and the control law is:
u(t) = —x1(t) — V2xo(t)

The eigenvalues of the closed loop matrix
(A— KB) are: -0.65 and -2.17.



Tuning LQ regulators

Tuning LQ regulators implies choosing the
weight matrices ¢ and R. This usually in-
volves some kind of trial and error.

However, because LQ regulators provide sta-
ble closed loop systems, we do not have to
worry about stability.

@ and R are usually chosen as diagonal matri-
ces, so that for a system with n states and m
controls we have n+m parameters to choose.

The values of Q;; and R;; are chosen accord-
ing to the relative importance of each state
and control variable, bearing in mind that we
must have R;; > 0 and Q;; > 0.



Tracking Optimal Control

The LQR controller is designed to drive the
states to zero. This is a limitation since
most control systems are tracking systems,
where the output is forced to achieve a de-
sired value.

Consider the system:

¢ = Az + Bu (5)

and the output equation:

y = Cz (6)

where y is the output of the system and C is
a matrix. Assume that the output vector y
has the same dimension as the input vector
Uu.

10



In the steady state, we assume that for an
output reference r there exists a combination
of state x and input u that makes y = r. This
implies that A must be invertible (no zero
eigenvalues) and that the inverse of CA-1B
must exist.

— AT+ Bu=0=z=-A"'Bua (7)

S

Substituting in 6:

j=-CA 'Bi=r=>u=— [CA_lB]_l r

(8)
Tracking via coordinate translation

An intuitive approach to make the output y
follow a reference r it to replace the state
equation in LQR with a state error equation.

Define z = z—x and u« = v — u. Then the
errors satisfy:
T = AZ + B (9)
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A suitable performance index would be:

R T
J=/O #7705+ R, Q>0,R>0 (10)

If the pair (A, B) is stabilizable and (4, Q1/2)
IS observable, the optimal feedback law is:

u(t) = —Kz(t) = u(t) = u(t) — K(z(t) —z(t))
(11)

where K = R~1BTS and S is the solution to
the ARE:

0=ATS+5SA—-SBR'BTS+0Q (12)

Replacing the values for w and z in (11):

u(t) —Kz(t) + KA Y (CA'B)"1r — (CA71B) 1r
—Kaz(t)+ [KA-1B—1] [CA~1B] 'r
—Kxz(t) + Fr

(13)
where F' is given by:

F= [KA—lB - I] [CA_lBrl (14)
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Assuming that all states x are measurable,
a block diagram of this control strategy is
given below.

T + Y
—| F Plant

Figure 1: Block diagram of LQ tracking con-
troller

Provided the above assumptions are satisfied,
this LQ tracking controller provides y = r in
the steady state, as the deviations x — z and
u — u are regulated about zero.

However, in the presence of step disturbances
affecting either the outputs or the states,
there will be a steady state error.
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Qutput error weighting

Note that if the performance index has the
form:

J = %/OOO {(y — T)TQy(y —7r)+ fZZTRﬁ} dt

it can be reduced to the state error weighting
form:

J = %/OOO [57Qz + @ Ra} di

by using Q = cT'Q,C (Homework: prove it).
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Example

Consider the system:

r = Ax + Bu
y =Cxzx
where
(01 0O | (1 0 |
A=|0 0 1 , B=|0 O
| 3 1 -3 | 0 1 |
|1 00
C_[O 1 O]

and a performance index:

1 o0
J = 5/0 {(y =T Qy(y —r) + @ R} dt
where

Qy = diag(10,1), R = diag(0.3,0.3)
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%» Matlab code using the Control Systems Toolbox
1 0;
0 1;

31 -3]
0
0

oo
I
[ |
(SN

0 1];
c=1[1 0 O
0 1 0];
D = zeros(2,2);
Qy = diag([10 11);
R = diag([0.3, 0.3]1);
[n n] = size(A);
[ny n] = size(C);
Q= C’*Qy*C
[K S] = 1qr(A,B,Q,R);
F = (K/AxB-eye(ny))/(C/A*B) ;
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The resulting values for K and F' are:

& _ | 6:0004 2.3001 0.4844
— | 0.4844 2.9087 0.8187

;| 60004 13001
— | —2.5156 1.9087
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Figure 2: Simulink block diagram.
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Figure 3: Simulation results after step changes
in r, showing the effect of a state step dis-
turbance with value d = [0.1, 0, 0]%.
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